Systematic Review

Effectiveness of insecticide-treated and untreated nets to prevent malaria in India†

Hans Van Remoortel1, Emmy De Buck1, Maneesh Singhal2, Philippe Vandekerckhove1,3,4 and Satya P. Agarwal5

1 Belgian Red Cross-Flanders, Mechelen, Belgium
2 Department of Trauma Surgery, All India Institute of Medical Sciences, New Delhi, India
3 Department of Public Health and Primary Care, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
4 Faculty of Medicine, University of Ghent, Ghent, Belgium
5 Indian Red Cross Society, New Delhi, India

Abstract

objectives India is the most malaria-endemic country in South-East Asia, resulting in a high socio-economic burden. Insecticide-treated or untreated nets are effective interventions to prevent malaria. As part of an Indian first-aid guideline project, we aimed to investigate the magnitude of this effect in India.

methods We searched MEDLINE, Embase and Central to systematically review Indian studies on the effectiveness of treated or untreated vs. no nets. Parasite prevalence and annual parasite incidence served as malaria outcomes. The overall effect was investigated by performing meta-analyses and calculating the pooled risk ratios (RR) and incidence rate ratios.

results Of 479 articles, we finally retained 16 Indian studies. Untreated nets decreased the risk of parasite prevalence compared to no nets [RR 0.69 (95% CI; 0.55, 0.87) in high-endemic areas, RR 0.49 (95% CI; 0.28, 0.84) in low-endemic areas], as was the case but more pronounced for treated nets [RR 0.35 (95% CI; 0.26, 0.47) in high-endemic areas, risk ratio 0.16 (95% CI; 0.06, 0.44) in low-endemic areas]. Incidence rate ratios showed a similar observation: a significantly reduced rate of parasites in the blood for untreated nets vs. no nets, which was more pronounced in low-endemic areas and for those who used treated nets. The average effect of treated nets (vs. no nets) on parasite prevalence was higher in Indian studies (RR 0.16–0.35) than in non-Indian studies (data derived from a Cochrane systematic review; RR 0.58–0.87).

conclusions Both treated and untreated nets have a clear protective effect against malaria in the Indian context. This effect is more pronounced there than in other countries.

keywords malaria, insecticide-treated bed nets, mosquito nets, India, primary prevention, systematic review

Introduction

Malaria is one of the major vectorborne diseases in South-East Asia. Despite the rapid decline in malaria incidence in recent years, WHO estimates indicate that India is the most malaria-endemic country in South-East Asia with 881,730 cases and 440 deaths reported in 2013 [1]. This results in a high social and economic burden including effects on fertility, population growth, saving and investment, worker productivity, absenteeism and medical costs [2].

Vector control is the main way to reduce malaria transmission in the community. Indoor residual spraying (IRS) or insecticide-treated bed nets and curtains (also known as insecticide-treated nets, TNs) are preventive measures to combat malaria [3].

A recent study in the malaria-endemic area of Sundargarh District in Orissa showed that IRS or TNs had the same epidemiological impact, suggesting that none of these interventions could be seen as superior in terms of effectiveness [4]. However, in the Indian context, the use of TN, but also untreated nets (UN), seems more appropriate than IRS. Indeed, TNs are easy to distribute and explain by community health workers and have the added advantage that no specific equipment is required (unlike for IRS). The recommendation to use TN should apply to the general Indian population with extra attention to the so-called high-malaria states (Orissa,
Chhattisgarh, Jharkhand and the states in the far north-east of India) and the rural areas, where medical services cannot be easily accessed and where about 90% of malaria deaths in India occur. A community-based survey in 596 Indian respondents revealed that TNs could be considered safe and socially acceptable and should be promoted for malaria reduction.

A Cochrane systematic review and meta-analyses of studies performed outside India already demonstrated that TNs are highly effective in reducing mortality and morbidity from malaria. However, because India has a wide topological and climatic diversity together with a wide species diversity of malaria vectors, collecting the best available evidence of the effects of net usage from Indian studies is relevant and timely. Therefore, we conducted a systematic literature review to investigate the effectiveness of TN or UN, compared to no nets (NNs) to prevent malaria in India.

Method

We followed an evidence-based set of items (27-item checklist) for the reporting of systematic reviews and meta-analyses, as formulated by the PRISMA statement.

Search strategy

Eligible studies were identified by searching the following databases: Medline (PubMed interface), Embase (Embase.com interface) and the Cochrane Central Register of Controlled Trials. Detailed information about the search formula can be found in Data S1. Studies were independently selected by two reviewers (HVR and EDB). Titles and abstracts of the retrieved studies were screened. The full text of each article that potentially met the eligibility criteria was obtained, and after a full-text assessment, studies that did not meet the selection criteria were excluded. The first 20 related items of the included studies in PubMed were scanned for other potentially eligible studies. The reviewers compared their final selection of studies and resolved discrepancies by consensus. Once agreement had been reached, data of all included studies were extracted into predefined evidence summary tables as described before.

Eligibility criteria

Population. Studies performed in India with laypersons and/or community health workers were included. A layperson is defined as a person who does not have specialised or professional knowledge of a subject.

Intervention. Bed nets or curtains either treated with a synthetic pyrethroid insecticide (TN) or not (untreated nets, UN) were included. The minimum target impregnation dose of the TN was 200 mg/m² permethrin or etofenprox, 30 mg/m² cyfluthrin, 20 mg/m² alphacypermethrin or 10 mg/m² deltamethrin/lambdacyhalothrin. No distinction was made between insecticide-treated bed nets and curtains, which were assumed to have approximately the same impact.

Comparison. Only studies comparing UN and/or TN with no bed net or curtain usage (NN) were included.

Outcome. Parasite prevalence and annual parasite incidence were counted as malaria outcomes. Parasite prevalence was assessed via an epidemiological assessment that consisted of a door-to-door fortnightly surveillance where thick/thin blood smears from fever cases were investigated microscopically. Only the period after (un)treated bed nets were impregnated and divided was used to assess the parasite prevalence, which was defined as the proportion of the population in whom Plasmodium infection is detected at a particular time with a diagnostic test (usually microscopy or a rapid diagnostic test). Annual parasite incidence was calculated as the total number of positive slides for malarial parasites (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale) among fever cases per 1000 population per year.

Study design. We included experimental [(cluster) randomised controlled trials, controlled clinical trials] or observational study designs (case–control studies and cohort studies). Narrative reviews, commentaries, letters and opinions were excluded.

Language. Studies in English, French, German or Dutch were included.

Search window. Studies from the date of inception of the databases until 16th of June 2014 were included.

Data collection

Data concerning study design, study population, trial location, duration and type of intervention, outcome measure and study findings were extracted.
Quality of evidence

The GRADE approach was used to grade the overall quality of evidence included in this review. GRADE considers limitations in study design of the included studies, inconsistency between the different studies (due to differences in populations, interventions or outcomes), indirectness (of population, intervention or outcome), imprecision and publication bias. Limitations in experimental study designs were analysed by evaluating the presence of lack of allocation concealment, lack of blinding, incomplete accounting of outcome events and selective outcome reporting. The quality of the evidence can be downgraded for each of the previous quality criteria and finally results in a high, moderate, low or very low level of evidence [14].

Statistical analysis

Statistical software was used to calculate the (unadjusted) risk ratio of the parasite prevalence (Review Manager 5.1) or the annual parasite incidence rate ratio (StatsDirect 2.8.0) in the intervention (TN or untreated nets) vs. the control group (no nets). We used data from the (first impregnated) post-intervention period to calculate these risk ratios and rate ratios. If no raw data on positive blood slides or parasite prevalence were available, an attempt to contact the authors via e-mail to request these data was made.

Mantel–Haenszel random-effects meta-analyses were performed to pool risk ratios and incidence rate ratios across studies. Subgroup analyses were carried out for low-endemic (annual parasite incidence ≤2) vs. high-endemic (annual parasite incidence >2) areas [15], for type of study design (clustered randomised controlled trials vs. controlled interrupted time series) and for the duration of the impregnation period (<1 year vs. ≥1 year). Heterogeneity was expressed by the I^2 statistic, which estimates the percentage of total variation between studies that is due to heterogeneity rather than chance. I^2 is calculated from basic results obtained from a typical meta-analysis as $I^2 = \frac{(Q-df)/Q}{Q}$, where Q is Cochran's heterogeneity statistic and df the degrees of freedom. Negative values of I^2 are put equal to zero so that I^2 lies between 0% and 100%. The following thresholds for the interpretation of I^2 can serve as a rough guide: 0–40% (might not be important), 30–60% (may represent moderate heterogeneity), 50–90% (may represent substantial heterogeneity) and 75–100% (considerable heterogeneity) [16].

Publication bias was assessed by visual inspection of funnel plots and by formal testing with Egger’s linear regression method (StatsDirect 2.8.0).

Results

The systematic literature search resulted in a total of 479 abstracts. Figure 1 represents a flow chart describing the selection process used in the systematic review.

Study characteristics

Sixteen experimental Indian studies were finally included (Table S2). Four studies were performed in low-endemic areas (annual parasite incidence ≤2) of Uttar Pradesh [17–20], and 12 studies were carried out in high-endemic areas (annual parasite incidence >2) of Gujarat (n = 1) [21], Chhattisgarh (n = 1) [22], Orissa (n = 7) [23–29] and Assam (n = 3) [30–32] (Figure 2). The duration of the (first) impregnation period ranged from 8 to 12 months in the majority of the studies (n = 15). Five months was the shortest impregnation period [32] while 1 study made use of a 2-year impregnation period. One study made use of insecticide-treated window and door curtains [17], while insecticide-treated bed nets were used in all other studies (n = 15). The TNs were impregnated with deltamethrin (n = 6) [19, 21, 26, 29, 31, 32], lambdacyhalothrin (n = 4) [23–25, 28], alphacypermethrin (n = 3) [17, 18, 22] or permethrin (n = 3) [20, 27, 30] with a dose ranging from 10 to 1000 mg*m$^{-2}$. Six studies reported the use of long-lasting insecticide-treated nets aiming to have a long-term protection from malaria [19, 20, 22, 27, 30, 31]. An epidemiological evaluation based on surveillance for malaria cases was performed in all studies. From this, direct malaria-related outcomes, such as slide positivity rate (i.e. the number of blood slides with any malaria parasites divided by the total number of blood slides examined multiplied by 100) or the number of malaria cases (i.e. any case in which, regardless of the presence or absence of clinical symptoms, malaria parasites have been confirmed by quality-controlled laboratory diagnosis), were available for 15 studies and were used for meta-analyses. One study was removed from meta-analyses because raw data on these outcomes were not published [32]. The use of untreated nets (intervention) was compared with no nets (control) in 13 studies (four in low-endemic areas [17–20] and nine in high-endemic areas [21–29, 31]).

Quality of evidence

All included studies were experimental studies (seven controlled interrupted time series and nine cluster randomised controlled trials), which resulted in an initial ‘high level of evidence’. Limitations in study design were present because the intervention/control groups were not
randomised (in three of the four low-endemic studies [17, 18, 20] and in two of the 12 high-endemic studies [23, 28]) and due to the general absence of reporting information about ‘lack of allocation concealment’ (all studies) and ‘lack of blinding’ (of the persons who analysed the blood slides) (15 of the 16 studies) (see Table S3 for further details). Therefore, the level of evidence was downgraded from high to moderate. Meta-analyses demonstrated that the results could be considered as precise (total number of malaria cases >300 and/or statistical significant effect around the pooled estimate). Although meta-analyses showed heterogeneity of the results, the level of evidence was not further downgraded for inconsistency because the majority of studies were in favour of the TNs (14 of the 15 studies) or the untreated nets (eight of the 14 studies). No indirectness was addressed as all studies included the study population of interest and only direct malaria-related outcomes (i.e. parasite prevalence and parasite incidence) were extracted.

Publication bias could not be assessed in low-endemic area studies due to the limited number of studies. Visual inspection could suspect publication bias in the high-endemic studies [five outliers in the funnel plot TNs vs. NNs (Figure S1), three outliers in the funnel plot UNs vs. NNs (Figure S2)]. However, no evidence of publication bias was found based on the Egger’s test ($P = 0.17$ for TNs vs. NNs, $P = 0.05$ for UNs no NNs). All together, the strength of the body of evidence for both the low- and high-endemic areas can be considered as moderate.

Synthesis of study findings

As Table S4 shows, we observed no significant differences ($P < 0.05$) or substantial heterogeneity (I^2 ranged from 0% to 41%, see Tables 1 and 2) between types of study design (clustered randomised controlled trials vs. controlled interrupted time series) and duration of the impregnation period (<1 year vs. ≥1 year). On the
contrary, moderate heterogeneity in results was present between low-endemic areas and high-endemic areas (i.e. $I^2 = 49\%$, Figure 3). These findings support our decision to separate the analysis for type of study location (low endemic vs. high endemic) and pooling the data from different study designs.

An overlap was observed between the pooled risk ratios (and 95% CI) based on random-effects models and fixed-effects models. Hence, we opted to report the more conservative results (i.e. broader 95% confidence intervals) of the random-effects models (Table 3).

TNs vs. NNs

By pooling the data (Figure 3), parasite prevalence was found to be 0.25% (14/5533, low-endemic area) and 4.3% (2031/46662, high-endemic area) in the TN group compared to 2% (105/5257, low-endemic area) and

Figure 2 Classification of included studies into low-endemic vs. high-endemic areas, based on the annual parasite incidence. Figure was adapted from ‘Estimation of True Malaria Burden in India’ [42].
A statistical significant reduced risk of parasite prevalence was found in high-endemic areas [66% risk reduction, overall RR 0.34 (95% CI; 0.25, 0.45), \(P < 0.00001 \)], and this observation was even more pronounced in the low-endemic areas [84% risk reduction, overall RR 0.16 (95% CI; 0.06, 0.44), \(P < 0.0001 \)]. The parasite incidence rates per 1000 population per year were two (low-endemic area) and 81 (high-endemic area) in the TN group vs. 1.13 (low-endemic area) and 190 (high-endemic area) in the NN group, with an incidence rate ratio of 0.20 [(95% CI; 0.10, 0.39), \(P < 0.05 \)] and 0.35 [(95% CI; 0.26, 0.48), \(P < 0.05 \)] for low- and high-endemic areas, respectively.

Table 1 Subgroup analysis: clustered randomised controlled trials vs. interrupted controlled time series

<table>
<thead>
<tr>
<th></th>
<th>Clustered randomized controlled trials [pooled RR (95% CI)]</th>
<th>Controlled interrupted time series [pooled RR (95% CI)]</th>
<th>(P)-value (chi-square test as test for subgroup differences)</th>
<th>Overall (I^2) (%) (for subgroup differences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-endemic area</td>
<td>0.32 (0.13, 0.81)</td>
<td>0.12 (0.04, 0.39)</td>
<td>0.19</td>
<td>41</td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.37 (0.27, 0.49)</td>
<td>0.29 (0.20, 0.44)</td>
<td>0.38</td>
<td>0</td>
</tr>
<tr>
<td>Untreated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-endemic area</td>
<td>0.36 (0.16, 0.81)</td>
<td>0.55 (0.26, 1.17)</td>
<td>0.46</td>
<td>0</td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.74 (0.58, 0.94)</td>
<td>0.63 (0.39, 1.01)</td>
<td>0.55</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Subgroup analysis: intervention period <1 year vs. intervention period \(\geq \) 1 year

<table>
<thead>
<tr>
<th></th>
<th>Impregnation period (<) 1 year [pooled RR (95% CI)]</th>
<th>Impregnation period (\geq) 1 year [pooled RR (95% CI)]</th>
<th>(P)-value (chi-square test as test for subgroup differences)</th>
<th>Overall (I^2) (%) (for subgroup differences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.21 (0.13, 0.33)</td>
<td>0.34 (0.19, 0.61)</td>
<td>0.21</td>
<td>36</td>
</tr>
<tr>
<td>Untreated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.74 (0.53, 1.02)</td>
<td>0.67 (0.52, 0.86)</td>
<td>0.63</td>
<td>0</td>
</tr>
</tbody>
</table>

9.5% (4276/45070, high-endemic area) in the NN group. A statistical significant reduced risk of parasite prevalence was found in high-endemic areas [66% risk reduction, overall RR 0.34 (95% CI; 0.25, 0.45), \(P < 0.00001 \)], and this observation was even more pronounced in the low-endemic areas [84% risk reduction, overall RR 0.16 (95% CI; 0.06, 0.44), \(P < 0.0001 \)]. The parasite incidence rates per 1000 population per year were two (low-endemic area) and 81 (high-endemic area) in the TN group vs. 1.13 (low-endemic area) and 190 (high-endemic area) in the NN group, with an incidence rate ratio of 0.20 [(95% CI; 0.10, 0.39), \(P < 0.05 \)] and 0.35 [(95% CI; 0.26, 0.48), \(P < 0.05 \)] for low- and high-endemic areas, respectively.

Table 2 Subgroup analysis: intervention period <1 year vs. intervention period \(\geq \) 1 year

<table>
<thead>
<tr>
<th></th>
<th>Impregnation period (<) 1 year [pooled RR (95% CI)]</th>
<th>Impregnation period (\geq) 1 year [pooled RR (95% CI)]</th>
<th>(P)-value (chi-square test as test for subgroup differences)</th>
<th>Overall (I^2) (%) (for subgroup differences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.21 (0.13, 0.33)</td>
<td>0.34 (0.19, 0.61)</td>
<td>0.21</td>
<td>36</td>
</tr>
<tr>
<td>Untreated vs. no nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-endemic area</td>
<td>0.74 (0.53, 1.02)</td>
<td>0.67 (0.52, 0.86)</td>
<td>0.63</td>
<td>0</td>
</tr>
</tbody>
</table>

9.5% (4276/45070, high-endemic area) in the NN group. A statistical significant reduced risk of parasite prevalence was found in high-endemic areas [66% risk reduction, overall RR 0.34 (95% CI; 0.25, 0.45), \(P < 0.00001 \)], and this observation was even more pronounced in the low-endemic areas [84% risk reduction, overall RR 0.16 (95% CI; 0.06, 0.44), \(P < 0.0001 \)]. The parasite incidence rates per 1000 population per year were two (low-endemic area) and 81 (high-endemic area) in the TN group vs. 1.13 (low-endemic area) and 190 (high-endemic area) in the NN group, with an incidence rate ratio of 0.20 [(95% CI; 0.10, 0.39), \(P < 0.05 \)] and 0.35 [(95% CI; 0.26, 0.48), \(P < 0.05 \)] for low- and high-endemic areas, respectively.

TNs were significantly more effective than UNs in the prevention of malaria in both low-endemic [68% risk reduction, pooled RR 0.32 (95% CI; 0.13, 0.78)] and high-endemic areas [56% risk reduction, pooled RR 0.44 (95% CI; 0.30, 0.66)].

No significant differences were observed when comparing long-lasting insecticidal nets vs. conventionally treated nets [low-endemic area: pooled RR 0.12 (95% CI; 0.02, 0.98) vs. pooled RR 0.21 (0.08, 0.57), \(P = 0.64 \); high-endemic area: pooled RR 0.23 (95% CI; 0.13, 0.39) vs. pooled RR 0.35 (0.25, 0.5), \(P = 0.18 \)].

Regarding results within the low-/high-endemic areas, there was evidence of heterogeneity across all analyses \([P \leq 0.05 \) in chi-square tests, \(I^2 \) ranged from 55% (Figure 3) to 95% (Figure 4), which was not explained by the study location (low- vs. high-endemic area).

The study that was not included in the meta-analysis (no raw data published) found that TNs or UNs had a significant effect on malaria (monthly parasite index) compared to no nets.
Discussion

The present systematic review shows that the use of TNs or UNs is both effective interventions for malaria prevention in India, whether living in low-endemic or high-endemic areas. Furthermore, TNs are more effective than UNs (approximately 30% more risk reduction).

Since 1953, the Government of India (Ministry of Health and Family Welfare) organises the National Vector-Borne Disease Program, which is an umbrella for prevention and control of 6 vectorborne diseases: malaria, dengue, chikungunya, Japanese encephalitis, kala-azar and filariasis. This programme includes both an annual IRS (DDT and malathion) in high-endemic areas and the widespread use of bed nets. The present study shows that TN and UN both are effective interventions to control malaria, in both low- and high-endemic areas, and might be preferable to IRS as TNs provide better protection against any infection (*Plasmodium falciparum* or *Plasmodium vivax*) than IRS in India (risk ratio IRS:TN = 1.70) [33]. Despite the proven effectiveness of net usage in

Table 3

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treated bed nets</th>
<th>No bed nets</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>2.2.1 low endemic area</td>
<td>Ansari 2002</td>
<td>3</td>
<td>1350</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ansari 2003</td>
<td>2</td>
<td>802</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Mittal 2012</td>
<td>6</td>
<td>1381</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Sreehari 2007</td>
<td>3</td>
<td>2000</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Subtotal (95% CI)</td>
<td>5533</td>
<td></td>
<td>5257</td>
</tr>
<tr>
<td>Total events</td>
<td>14</td>
<td>105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.69; Chi² = 8.67, df = 3 (P = 0.03); I² = 65%

Test for overall effect: Z = 3.55 (P = 0.0004)

2.2.2 high endemic area

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treated bed nets</th>
<th>No bed nets</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Bhatia 2004</td>
<td>1226</td>
<td>30634</td>
<td>2556</td>
<td>30647</td>
</tr>
<tr>
<td>Bhatt 2012</td>
<td>87</td>
<td>5316</td>
<td>171</td>
<td>3865</td>
</tr>
<tr>
<td>Das 1993</td>
<td>36</td>
<td>368</td>
<td>166</td>
<td>797</td>
</tr>
<tr>
<td>Dev 2010</td>
<td>40</td>
<td>2603</td>
<td>195</td>
<td>2950</td>
</tr>
<tr>
<td>Dev 2011</td>
<td>4</td>
<td>2100</td>
<td>76</td>
<td>2078</td>
</tr>
<tr>
<td>Sahu 2003</td>
<td>29</td>
<td>489</td>
<td>82</td>
<td>501</td>
</tr>
<tr>
<td>Sahu 2008</td>
<td>27</td>
<td>497</td>
<td>156</td>
<td>590</td>
</tr>
<tr>
<td>Sharma 2006</td>
<td>36</td>
<td>506</td>
<td>49</td>
<td>367</td>
</tr>
<tr>
<td>Sharma 2009</td>
<td>16</td>
<td>1953</td>
<td>50</td>
<td>1863</td>
</tr>
<tr>
<td>Yadav 1998</td>
<td>191</td>
<td>1134</td>
<td>438</td>
<td>626</td>
</tr>
<tr>
<td>Yadav 2001</td>
<td>339</td>
<td>1062</td>
<td>337</td>
<td>786</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>46662</td>
<td>45070</td>
<td>86.5%</td>
<td>0.34 [0.25, 0.45]</td>
</tr>
<tr>
<td>Total events</td>
<td>2031</td>
<td>4276</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.20; Chi² = 205.09, df = 10 (P < 0.00001); I² = 95%

Test for overall effect: Z = 7.44 (P < 0.00001)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treated bed nets</th>
<th>No bed nets</th>
<th>Risk ratio</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Treated vs. no nets</td>
<td>Low-endemic area</td>
<td>0.16 (0.06, 0.44)</td>
<td>0.13 (0.07, 0.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-endemic area</td>
<td>0.34 (0.25,0.45)</td>
<td>0.44 (0.42,0.46)</td>
<td></td>
</tr>
<tr>
<td>Untreated vs. no nets</td>
<td>Low-endemic area</td>
<td>0.49 (0.28, 0.84)</td>
<td>0.42 (0.30, 0.60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-endemic area</td>
<td>0.70 (0.56, 0.87)</td>
<td>0.63 (0.59, 0.67)</td>
<td></td>
</tr>
</tbody>
</table>
India by our meta-analyses, the transmission of malaria remains complex, especially in high-endemic areas, due to factors such as variation in vast terrain, population, practices, ecological conditions and multiplicity of disease vectors [9, 10].

To our knowledge, this is the first study that systematically reviewed all available evidence from Indian studies on the effectiveness of TN and UN in the prevention of malaria. In 2004, a Cochrane systematic review already showed that TNs were highly effective in reducing morbidity and child mortality from malaria. This review also clearly showed that TNs have an average risk reduction effect on parasite prevalence of 13–42% (RR 0.58–0.87), which is even higher in our analysis (65–84% risk reduction). Only non-Indian randomised trials were included in the Cochrane review because Indian randomised trials were published after January 2003 (i.e. end date of search strategy in the Cochrane review) [19, 21, 22, 24–27, 31], with the exception of the study by Yadav et al., published in 2001 [29]. The latter study was not marked as a clustered randomised controlled trial in the Cochrane review because the unit of allocation in all included Indian clustered randomised trials consisted of a set of different villages, which were pooled before randomising into the intervention or control group. On the contrary, clustered randomised controlled trials in the Cochrane review were set up more rigorously by pairing villages according to size, geographic location, malaria incidence at baseline, etc. after which randomisation took place. The inaccurate randomisation process in the Indian trials, together with the absence of information on allocation concealment and/or blinding and the absence of randomisation in the controlled interrupted time series resulted in downgrading the level of evidence from high to moderate (due to limitations in study design).

By calculating both risk ratios (from parasite prevalence) and rate ratios (from annual parasite incidence), we were able to state that the probability of having...
parasites in the blood is less when TNs and UNs have been used [risk ratio (95% CI) below one] compared to NNs. Secondly, the rate ratios (95% CI) below one (intervention vs. control) indicated that TNs and UNs are probably causally associated with the prevention of parasites in the blood. As mentioned, the protective effect of TNs was more pronounced compared to UNs.

A minimal but no maximal target impregnation dose (depending on the insecticide) was used as an inclusion criterion for the intervention (i.e. TNs). Hence, we included both conventionally treated nets (effective during one year without retreatment) and long-lasting treated nets (effective during three years without retreatment) [34]. We assume that this difference in effect would not have an impact on our results as the post-intervention period (i.e. time until the first re-impregnation period) was ≤1 year in the majority of the studies (15/17). This was confirmed by observing no statistically significant differences between conventionally treated nets and long-lasting treated nets (subgroup analysis).

This review is part of a collaboration between Belgian Red Cross-Flanders and the Indian Red Cross Society to develop evidence-based Indian first aid and prevention guidelines. Besides collecting the best available scientific evidence, gathering information from experts in the field of malaria and taking into account the preferences of the target population (Indian laypeople) are essential when developing evidence-based guidelines.

From the perspective of Indian laypeople (target population), treated or untreated nets have four major advantages over indoor residual spraying. Firstly, nets can work in most of the rural areas including inaccessible areas inhabited by ethnic tribes. Secondly, nets are easily portable by migrating populations during natural calamities such as droughts, flash floods, cyclones, avalanches or landslides. Thirdly, TNs could be seen as the preferred intervention due to the minimal amount (~5%) of adverse health events (skin irritation, eye irritation) and the possible collateral benefits (i.e. relief from other household pests such as head lice, bed bugs, cockroaches, ants and houseflies) [19, 25, 31, 32]. Fourthly, a randomised cluster trial in India found that net usage is a more cost-effective intervention than IRS by showing a significant lower average cost per malaria case averted (US$2.9 for treated nets versus US$87 for IRS) [21]. A possible disadvantage is that protection is only offered during sleeping time and that nets may be disused or not used by a proportion of the population. However, it has been shown that more users described here forms part of a collaborative project between the Belgian Red Cross-Flanders, the Indian Red Cross Society and the Indian National Vector-Borne Disease Program of India. Therefore, high-risk populations, that is people living in the most severely affected areas with poor healthcare access, should be targeted in future research projects. Interventions including the distribution of bed nets by non-governmental organisations local to the endemic area, mobile malaria clinics, the use of mobile technology [9], and/or greater engagement of village-level health workers for early diagnosis and treatment [40] could be promising for the further reduction and elimination of malaria in India. Besides these future research projects, the implementation of innovative (effective) vector control interventions should be facilitated by the central and state governments. Unfortunately, the available resources/funds are limited the last years (due to the financial crisis worldwide), which makes this implementation challenging [41].

In summary, we can conclude that using insecticide-treated nets or untreated nets (to a significant lesser extent) is both effective malaria prevention techniques for low- and high-endemic areas in India. It was shown that the magnitude of the average effect was higher in the Indian studies compared to the non-Indian studies (as analysed by the Cochrane Review) [8]. These findings were based on 16 experimental studies of moderate quality and support the use of insecticide-treated nets by the National Vector-Borne Disease Program of India.

Acknowledgements

We thank Drs Hans Scheers for his statistical support to perform meta-analyses. Tessa Dieijtjens, Nele Pauwels (Centre for Evidence-Based Practice, Belgian Red Cross-Flanders, Belgium), Axel Vande Veegaete (Scientific Coordinator, Belgian Red Cross-Flanders, Belgium) and Hugo Geuvens (Delegate, Belgian Red Cross-Flanders, India) are acknowledged for the interactive meetings and their input during the process of this project. The work described here forms part of a collaborative project between the Belgian Red Cross-Flanders and the Indian Red Cross Society to develop evidence-based Indian first aid and prevention guidelines. This work was supported by the Belgian Directorate-General for Development Cooperation (DGD) and Belgian Red Cross-Flanders.
References

30. Dev V, Raghavendra K, Barman K, Phookan S, Dash AP. Wash-resistance and field efficacy of Olyset net, a permethrin-incorporated long-lasting insecticidal netting, against...

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Details of the search strategy terms in the different databases.

Figure S1. Funnel plot representing the studies (insecticide-treated nets vs. no nets) performed in high endemic areas (diamonds). The outer dashed lines indicate the triangular region in which 95% of the studies are expected. The vertical dotted line shows the average risk ratio across all trials.

Figure S2. Funnel plot representing the studies (untreated nets vs. no nets) performed in high endemic areas (diamonds). The outer dashed lines indicate the triangular region in which 95% of the studies are expected. The vertical dotted line shows the average risk ratio across all trials.

Table S1. The 27-item PRISMA checklist

Table S2. Summary of the study characteristics

Table S3. Limitations in study design

Table S4. Summary of study findings included in the meta-analyses

Corresponding Author Hans Van Remoortel, Belgian Red Cross-Flanders, Motstraat 40, B-2800 Mechelen, Belgium.

Tel.: +3215443476; E-mail: hans.vanremoortel@rodekruis.be